skip to main content


Search for: All records

Creators/Authors contains: "Ge, Qingfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 9, 2024
  2. Carbon-supported nanocomposites are attracting particular attention as high-performance, low-cost electrocatalysts for electrochemical water splitting. These are mostly prepared by pyrolysis and hydrothermal procedures that are time-consuming (from hours to days) and typically difficult to produce a nonequilibrium phase. Herein, for the first time ever, we exploit magnetic induction heating-quenching for ultrafast production of carbon-FeNi spinel oxide nanocomposites (within seconds), which exhibit an unprecedentedly high performance towards oxygen evolution reaction (OER), with an ultralow overpotential of only +260 mV to reach the high current density of 100 mA cm -2 . Experimental and theoretical studies show that the rapid heating and quenching process (ca. 10 3 K s -1 ) impedes the Ni and Fe phase segregation and produces a Cl-rich surface, both contributing to the remarkable catalytic activity. Results from this study highlight the unique advantage of ultrafast heating/quenching in the structural engineering of functional nanocomposites to achieve high electrocatalytic performance towards important electrochemical reactions. 
    more » « less
  3. Abstract

    Copper compounds have been extensively investigated for diverse applications. However, studies of cuprous hydroxide (CuOH) have been scarce due to structural metastability. Herein, a facile, wet‐chemistry procedure is reported for the preparation of stable CuOH nanostructures via deliberate functionalization with select organic ligands, such as acetylene and mercapto derivatives. The resulting nanostructures are found to exhibit a nanoribbon morphology consisting of small nanocrystals embedded within a largely amorphous nanosheet‐like scaffold. The acetylene derivatives are found to anchor onto the CuOH forming CuC linkages, whereas CuS interfacial bonds are formed with the mercapto ligands. Effective electronic coupling occurs at the ligand‐core interface in the former, in contrast to mostly non‐conjugated interfacial bonds in the latter, as manifested in spectroscopic measurements and confirmed in theoretical studies based on first principles calculations. Notably, the acetylene‐capped CuOH nanostructures exhibit markedly enhanced photodynamic activity in the inhibition of bacteria growth, as compared to the mercapto‐capped counterparts due to a reduced material bandgap and effective photocatalytic generation of reactive oxygen species. Results from this study demonstrate that deliberate structural engineering with select organic ligands is an effective strategy in the stabilization and functionalization of CuOH nanostructures, a critical first step in exploring their diverse applications.

     
    more » « less
  4. Abstract

    Fibrous materials serve as an intriguing class of 3D materials to meet the growing demands for flexible, foldable, biocompatible, biodegradable, disposable, inexpensive, and wearable sensors and the rising desires for higher sensitivity, greater miniaturization, lower cost, and better wearability. The use of such materials for the creation of a fibrous sensor substrate that interfaces with a sensing film in 3D with the transducing electronics is however difficult by conventional photolithographic methods. Here, a highly effective pathway featuring surface‐mediated interconnection (SMI) of metal nanoclusters (NCs) and nanoparticles (NPs) in fibrous materials at ambient conditions is demonstrated for fabricating fibrous sensor substrates or platforms. Bimodally distributed gold–copper alloy NCs and NPs are used as a model system to demonstrate the semiconductive‐to‐metallic conductivity transition, quantized capacitive charging, and anisotropic conductivity characteristics. Upon coupling SMI of NCs/NPs as electrically conductive microelectrodes and surface‐mediated assembly (SMA) of the NCs/NPs as chemically sensitive interfaces, the resulting fibrous chemiresistors function as sensitive and selective sensors for gaseous and vaporous analytes. This new SMI–SMA strategy has significant implications for manufacturing high‐performance fibrous platforms to meet the growing demands of the advanced multifunctional sensors and biosensors.

     
    more » « less